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Properties of associative memory analog neural networks with asymmetric synaptic couplings
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Using the self-consistent signal-to-noise analysis, we study fully connected analog neural networks having
asymmetric synaptic couplings and positive-valued nonmonotonic transfer functions. Asymmetric synaptic
couplings we assume are based on random patterns withabasd given byJiJ-:(l/N)Z#{(g{‘fa)(ng‘
—a)+(b/\m)(gi"—a)+c(§f‘—a)+(d/N)}, whereN is the number of neurons. We find that the synaptic
interaction term of memorizing the postsynaptic actitiyterm) and that of the presynaptic activitg term)
respectively, give rise to renormalized noise and a renormalized pattern-dependent but neuron-independent
component in the local field of neurons, with the latter making the network behavior sample dependent. An
enhancement of the storage capacity and the super retrieval phase due to the use of honmonotonic transfer
functions are shown to occur as a result of renormalization of noise even in the presence of the asymmetric
synaptic couplings[S1063-651X97)05306-3

PACS numbdps): 87.10+¢€, 05.90+m, 05.70.Fh, 07.05.Mh

[. INTRODUCTION Because of the inadequacy of the replica method in dealing
with the stochastic neural networks without energy func-
Since the important contribution in Hopfield’s pagél, tions, Peretto resorted to a different approach without replica
great progress has been made in the field of neural networalculations to approximately solve the problem. He noticed
theory [2-7]. To date most studies of physical models of the C term to be the most influential for limiting the size of
associative memory neural networks have been conducted hije storage capacity: with increasi@y the storage capacity
taking advantage of the existence of a Lyapunov function obf the network with input-output function of tapu] de-
energy functiorj8], which enables one to employ a powerful creases appreciably.
and systematic method of statistical mechanjés-11]. We note here that th& term and theC term may be
Model neural networks with energy functions are constructediewed as a kind of asymmetric synaptic noise, each of
on the basis of the assumption of introducing symmetry inyhich seems to contribute a noise component in the local
the scheme of synaptic couplings between neurons. Synaptjelds of neurons, and specifically that the latter will give rise
couplings with a certain learning rule are a major ingrediento a pattern-dependent but neuron-independent component,
of attractor networks of associative memory for recallingwhich Peretto did not address.
stored patterns. Conveniently assumed in extensive research we would like to elaborate on the above issues by formu-
is the symmetric Hebb learning rul@2]. Use of it has been |ating the problem anew. Taking advantage of our systematic
proved to be able to capture essential features of attractenethod of the self-consistent signal-to-noise analysis
networks of associative memory models at the cost of bio{SCSNA [14,15, which is capable of dealing with analog
logical realism. networks[7,8,10,11,14—2Bwith a transfer function of an
One may, however, hope to know what will happen to thearbitrary shape including the case where no energy functions
behavior of networks with asymmetric couplings, which areexist[14,15,19—-22 we consider analog networks with the
ubiquitous in biological nervous systems. Previously Perett@ynaptic couplings given by Edl). In view of biological
[13] proposed the asymmetric couplings relevance we choose a transfer function representing neu-
1 ron’s mean firing rate to be positive valued. When a transfer
T e u u — function is not an odd function of the membrane potential of
JiTN % {AGEEF+BE+CH DY 3i=0, (D a neuron, the scaling witN for the B term of Eq.(1) has to
be taken differently from the case studied by Peretto, because
whereN and{¢/‘} respectively represent the number of total the site average of neuron output does not vanish for lack of
neurons and a set & random patterns taking eitherl or  symmetry with respect to reversing the sign of the output.
+1, to investigate the storage capacity of an associativ@aking proper scalings needed for the terms of &g, we
memory model that has biological relevance regarding syninvestigate their contributions to the local fields of neurons.
aptic couplings. Assuming the updating dynamics of the net- Our aim in the present paper is, first, to evaluate, using
work to be given by the stochastic dynamics, he aimed to geSCSNA, the universal effects of thg term and theC term
insights into the effects on the behavior of memory recall ofon the behavior of the storage capacity, and second, to ex-
the synaptic interaction terms responsible for memorizingamine the problem of whether the super retrieval state
postsynaptic(B term) and presynapti¢C term) activities.  [15,2( is allowed to remain in existence in the presence of
the above types of asymmetric couplings, when nonmono-
tonic transfer functions are chosen appropriately.
*Electronic address: myosioka@apneuro.ap.titech.ac.jp Analog networks with nonmonotonic transfer functions,
"Electronic address: mshiino@ap.titech.ac.jp which are obtained from sigmoidal functions by cutting off
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the output activity of a neuron, have recently attracted much Flu]
attention in the light of improving network performances as
an associative memorj15,19-24, although in such net- 1

works the usual type of Lyapunov function does not make
sense to ensure the stability of memory retrieval. They ex-
hibit, in general, an enhancement of the storage capacity
compared to the Amit, Gutfreund, and SompolingGS)
value of 0.149] for the case of sigmoidal transfer functions, 3 ) u
an extreme reduction of the number of spurious states, and
the occurrence of the super retrieval states, when the sym- F|G. 1. The shape of the transfer function investigated in the
metric Hebb rule is incorporated into the synaptic couplingspresent study.

The super retrieval state is a retrieval state in which a pure
noise component in the cross-talk noise generated by thgeuroni. Then, with these definitions, the dynamicsupfis
interference among an extensive number of stored patternfescribed by the differential equations
vanisheg15,20. Its occurrence is a kind of phase transition
phenomenon, which directly reflects the effect of noise N
renormalization for the local fields of analog neurons with prii —ui+ > J;Flyl, i=1..N. 2
nonmonotonic transfer functions having a steep negative J7]
slope.. The outcome of the appearance of the super retrieval In biologically plausible neural networks;[u] should
state is that memory retrieval without errors is possible even ke a positive value because of what is meanEby]. In
in the case of an extensive memory loading under the Iocaﬁew ofpthis we assume the transfer function to bz '
learning rule of the Hebb type. We are interested particularly k
in how a noise component arising from tBeterm or the F[u]=1[u]-1[u— 6] @)
C term is renormalized to vanish, leading to the occurrence '
of the super retrieval state for certain nonmonotonic transfegnere 1x] denotes the Heaviside function afd positive
functions. _ parameter representing cutoff of activity of a neuron. While

The paper is organized as follows. In Sec. Il, we formu-geting 9=« gives a positive-valued sigmoid transfer func-
late the model of analog networks that have the asymmetrigon the F[u] with #< defines a nonmonotonic transfer
synaptic connections of E@1) with proper scalings WittN  nction as shown in Fig. 1. The reason for considering non-
and positive-valued transfer functions including the non-yonotonic transfer functions is that, in the case of snaall
monotonic case. In Sec. lll, we develop the SCSNA to obtairyhe can observe good network performance such as an en-

a set of order parameter equations for retrieval states. Theancement of the storage capacity and occurrence of the su-
SCSNA presented here takes a different scheme from thﬁer retrieval statefl5,19—23.

original one in that the noise renormalization procedure pro- The networks are assumed to memor2eandom pat-
ceeds without introducing overlaps with nonretrieved patyarns  which are represented bg* (i=1,..N, u
1 | grey 1

tems each of which is of order {N, yielding the same =1,...,P) taking either— 1 or +1 according to the probabil-
result as that of the original version. We show that the COBXjry diistribution

istence of théB andC terms in the synaptic couplings makes

the network behavior illegitimate because of the appearance 1-a 1+a

of a diverging noise term in the large limit. In Sec. IV we Pr &) = - S(E+1)+ - S(&f—1), (4)
present the results of our analyses on the behaviors of the

networks with asymmetric synaptic couplings based on ei- . .
ther theB term orC term. Part of the present work concern- where biasa is the average of{'.

ing the effect of theC term was already reported elsewhere on;;rsheth?[/r;?g“gbgﬁggnggijm \(/)vdeif;isuvrcﬁaf \rsefesyrpe@g[{;;
[25]. In addition to the effects of noise from thg term or y 9 P y

- . discussed by Peret{d3]. The asymmetric learning rul@)
C term, we also study the possibility of removing the re- L
versed states as a kind of spurious one by employing th roposed by Peretto has the property that, by adjusting

effect of C term whose existence makes the synaptic Coui‘o'rr(ri' andD, it can be equivalent to any learning rule of the
plings asymmetric with respect to reversing the sign of the
stored patterns. In Sec. V we give a brief summary and re- P

1
marks. 3=y 21 AJ(E ), )
=

IIl. MODEL OF NEURAL NETWORKS

where AJ(&,€1) is a function of & and &/, becauset
WITH ASYMMETRIC COUPLINGS J

andé}* take only—1 or +1.

The neural networks we study are analog networks SettingA=1 in Eq. (1), we further scaleB, C, andD
[10,11,14,15,17,18which consist ofN neurons. Denoting appropriately with respect thl so that the network with the
the membrane potential of neurorby u;, we assume that transfer function (3) behaves properly in the limit of
output signals of neuron are described by its mean firing N—o. Noting that (1;(/N)2M§f‘ and (1N)X;F[u;] tend re-
rateF[u;], which is called a transfer function. Synaptic cou- spectively to a random and constant quantity of order unity
plings J;; connect the output of neurop to the input of in the limit N—c, we have
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1 P b d where

BN | dE eyl W0 ©
X=5 > X (16)

In the case ofa#0, introducing »¥=¢“—a, we have,
instead of Eq(6), The third term on the right-hand sidRHS) of this equation
represents the cross-talk noise that varies from site to site.
This noise does not obey a Gaussian distribution because of
the correlations between{ “+(b/\/—)77 +cy)t, andx; .

(7)  The structure or characteristic of the noise term can be elu-

cidated by the SCSNAL4,15, which conducts renormaliza-
which is the learning rule to be investigated in what follows.tion of noise.

We define several quantities to be used later. First we The SCSNA has its basis on the assumption that the local

18 L. b d
IJ_NE: 77'77+\/_N77'+C77 N[+ Ji=0

define the loading rate of memorized patterns as fields (15) take the form{14,15
o=, ®) hi=(ny+c)m +a dX
1 " b "
The overlap with patterp is defined as N ;;1 ; i nf+ N ni e | XA
N
1 17
=N & (& -aF[u], (9)

In this equation, a super script of x| denotes thak{* has
almost negligible correlations with pattegy which can in-
eed be neglected in the limN—o«, and differs only by
g)(ll\/ﬁ) from x; . Such a reduction of correlation is carried
ut by removing the contribution of pattepa to the local
ield of neuronj as is done below. The crux of our analysis,
SCSNA, is to determine andI” self-consistently.

which takes value of order unifyO(1)] when patternu is
retrieved. This overlap is, however, inappropriate to measur
the degree of quality of retrieval because of the shape of th
transfer function as considered in the present study. Ther
fore we define the tolerance overlg}b]

1 N Using Egs.(13) and(17), x; is rewritten as
9=y 2 & souil, (10
xi=F| (p+c)mi+a dX
which takes unity if pattern is completely retrieved.
Setting
i 2 My i [ I I-L_|_ T

XIZF[ui]! (11) N el 77| 7; \/N 7 C77] TX Xi |-

we define the local field of neurdnas (18

We solve this equation fax; to obtain the form

hi:E J”X] . (12)
j#i

=F| (7t+c)mi+a dX

[ll. SELF-CONSISTENT SIGNAL-TO-NOISE ANALYSIS

We analyze the above-described networks in the limit 1 2 u b | ou
N— o0, Assuming that the networks approach equilibrium for *N = = U N e x|, (19
a long time to retrieve a desired pattern, we begin with solv-
ing the equations of equilibrium state Substituting this into local field15), we have
XI:F[hI]v |:1||N (13) h|=(77|1+C)m1+a dX
under the condition that 1 b -
+N E 2 77{‘77? \/— 77| +C7]J F[hj]l
ml=0(1), m*=0(1\N), u=2...P, (14 pFLJFI N
20
where pattern 1 is selected as a retrieved one. 9
Substituting Eq(7) into Eqg.(12), we have where
hi=(7'+c)m'+a dX i=(n+c)ym'+a dX
‘s > > | b nf+en|x;, (15 +£E > n-”ﬂﬁin”cvﬁ ™. (21)
Nz | Y \/N ' e N Z i | JN
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Now we carry out the reduction of correlations. Perform-where

ing a Taylor expansion dF[h ] of Eq. (20), we have

h|:(7li +c)mt+a dX

’ﬁiu:(ﬂjl"F c)mt+a dX

1 b
1 b + — E 2 vV, vV v v
- g+ nit+cny | ™ (23
1 b and
+ — Kt — P+ cpt
Nﬂﬁ; (77. 7] \/Nﬂ. 7
x“=F[h*]. (24)
~ o~ 1 ] J
X F'[h{] Ng- 7} 77k+\/_ﬁ nteni | X
' Let us take notice of the fourth term on the RHS of Eq.
22 (22
|
1
— by — pt+cpt B+ — pt+epl |F! h” XE
N2 el (77| 7 \/Nm 7 (77] Tk \/Nﬂj nk [ ]T k
1 b - —
=— Y+ — pf+c Eopb+ — pl+cqpl |F'[h#]wx{
Nz;ljsﬁl k;, (77| 7; \/an 77] (77] K \/Nﬂj Mk [ ]]Tk
1 b b -
+ﬁz,u,:#lj¢l (77| 7'+ \/an +C17])(7]f‘77f‘ \/N771+C77| F [hiT7x{". (25
|
Since&l* obeys the probability distributio), in the limit of 1
N—o, the RHS of the above equation is rewritten in the N 2 2 i+ —= i +enl | XX
form pFELJF WN
1
bc N E (77| 7/M+_ Ui +C77]
(1-a)U 2 X | ni'mf+ —= nl+emlit — | N# N
N iF1k N VN 2 2y2
X{1+(1-a9)Urxf+a(l-a’)Urx. (29
+a(l—a?)?Urx, (26)
Based on this equation, one can self-consistently determine
andT. It follows that
where
—2—1 (30)
1oz~ T1-(1-a)u
u=< > PR, 27 (1=a)
: and
Note thatU does not depend op in the limit N— . (1-a%?u
Now we focus our attention to the term I'=a 1—(1=adu’ (3
1 Then, using Eqgs(17) and (30) we rewrite the local field
1-a®)u — Xt 28 as
(1-au g 2 2 f 7 (28

appearing in Eq(26). This term is seen to diverge in the

limit of N—oo when one notes}'~Xx,. It means that our

networks cannot retrieve any pattern whienis infinite, if

bc#0. Thus we must keepc=0: b=0 orc=0 to make

the network properly function, and we do so from now on.
Then, from Eqgs(17), (22), and(26), we obtain

1
=(ni+c)m+ =
hi=(n +c)m+a dX 1-(1=a%U N

X f+ — pl+epgl | xt+Tx
35 ottt vent g

=(pl+c)m+a dX+z+cS+Tx;, (32



XH

e

H

nt—=

JN
and

(34

We note that wherb=0, S equals the sum ofm*(u
=2):5=2,,1m*, since one has in general

1 1
e = ] TNy
m 1—(1—a2)U[NjZ‘i771X
1o b
+(1-a%)U = >, —xt. 35
(1-ahU G2 o J] (35

S is not a site-dependent quantity, but a sample-depende
one. The appearance of sughn the local field(32) means
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Then, from Egs.(32) and (37), we obtain the resultant
SCSNA equation:

Y(&,2)=F[(é—a+c)m+a dX+cS+ Jarz+TY],

that the network witrc#0 becomes sample dependent evengq

in the limit N—o. Then a problem arises of obtaining the
probability distribution ofS. As will be discussed later, cal-
culating the distribution of is too complicated to perform.
However, onces is known, we can evaluate the properties of
the network as a function @&. Therefore, for the time being,
we treatS as a given parameter.

Pure noisez; obeys a Gaussian distribution with mean 0
and variancer?, which we now evaluate. From E(B3) we
have

-1 1
AT -(1-a)UPE N2 élél
b
Xjéi J;i et (7’ f \/_—>< J_)X'Mllxjﬂzz
(36)

(41)
m=<f+tz(§—a)Y>, (42
UM:< fﬂooz zY>, (43)
x=< fijz Y>, (44)
q=< JMDZ Y2>, (45)
(1-a?%?u
nt F:a—l—(l—az)u (46)
(1-a%
fzm{(l a%)q+b2X?}, (47)
where
S=> m* (b#0) (49)
pnFl
In these equations
fj:Dz--:fj:--- \/T_Trexp(—ZZIZ)dz (49

and(---) denotes the average over pattern 1, nanfelyhich
obeys the probability distributiot¥).
Equation (41), in general, admits multisolutions for

Since we can replace the average over site by the averagdé,2). In that case one has to select an appropriate solution

over patterns, we have

a(l—a?)

2=((z7))= W{(l a?)q+b*x?},

37)

of Y(&,z) among them, using the Maxwell rule, to perform
the Gaussian integrations over An example of the appli-
cation of the Maxwell rule is demonstrated in Appendix A.

It should be noted that the solutions{,q,X) obtained
from the SCSNA equation@1)—(47) are not always of rel-
evance, because the SCSNA is based on the fixed point equa-

where((...)) denotes the average over the random patterntion (13) alone and does not take the stability of its solution

and

1

- 2

=N X (38)

Finally we carry out the change of variables
o’=ar (39
and

z

— =z (40
g

into account. In the case of networks with asymmetric cou-
plings or nonmonotonic transfer functions for which the ex-
istence of a Lyapunov function is not expected or known, the
stability of SCSNA solutions has to be determined by nu-
merical simulations of the dynamicg).

IV. THE BEHAVIORS OF THE NETWORKS
WITH ASYMMETRIC COUPLINGS

Based on the results of the SCSNA and numerical simu-
lations, we explore properties of the networks with the asym-
metric synaptic coupling€7). In the previous papd25], we
discussed the dependence of the network properties on bias
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FIG. 2. Phase diagram showing the storage capacity as a func- I T o e e o S

tion of @ in the case oh=b=c=d=0. a, is the storage capacity
obtained with the SCSNA, andl is that obtained with numerical
simulations. The region below, is the retrieval phas@), and that
below ¢ is the super retrieval phag8R).

a [26] in the presence of the term. Settinga=0 in what
follows, we are concerned mainly with the effects of the
term and thec term.

A. An enhancement of the storage capacity
and the occurrence of the super retrieval
in the case with small@

We first present general properties of the analog networks
with the nonmonotonic transfer functiof8) by settingb FIG. 3. Local-field distribution obtained by numerical simula-
=c=d=0. The behaviors of the associative networks exhib{ions with N=1000 fora=b=c=d=0 under the conditiorx
ited by the nonmonotonic transfer function are summarized™ ©-05- (& 6=0.3 (super retrieval (b) §=0.8.
into the phase diagram on tifle- « plane in Fig. 2., is the _ ] )
critical value of the loading rate obtained by the SCSNA, and1€bb type with an extensive memory loading. One can
a, is that obtained by numerical simulations with  Verify this phenomenon by means of numerical simulations.
=1000. While@,= a, holds in the case of largs, one has Figures 3a) and 3b) show the distributions of the local
a,<a in the case of smalb. The difference betweef, fields obta}lned by n'umerlcal S|mulat|_ons, respectively, in the
and a,, arises from the fact that the networks having a non-SUPer retrieval and in t.he normal retrieval phgsg for_the same
monotonic transfer function witli<w are not expected, in valueé «=0.05. One indeed observes a distribution with
general, to have Lyapunov functions ensuring stability of theSharply peaked components in Figal3 Because of'x; with
memory retrieval and also that solutions of the SCSNA equal <0 in the local field(17), the distribution forh>0 com-
tions may correspond to unstable solutions of the originaPrises twod-function components:

dynamics(2). Indeed one can observe the occurrence of os- o o o
cillatory motions in the time evolution of the retrieval dy- P(h)=38 h+ 6+ = +(9+ — 5[h— 9+ —
namics of analog networks having a certain type of non- 2 2 2
monotonic transfer functions[15]. We observe an o o

enhancement of the storage capacity to occur: compared with +|3-6- —) Slh—6— —} (50)
the AGS value, the storage capacity increases a® de- 2 2

creases fromp=oo. ] ] o

The enhancement of the storage capacity is caused byv&hlch are a direct consequence of the application of the
reduction of the magnitude of the cross-talk noise that occur¥axwell rule.
as a result ofU<0 in the case of nonmonotonic transfer
functions[6] [see Eq.(37)]. Note thatU measures the site B. Effect of the b term
average of the derivative of the outpuY(h), i.e.,
(dY(h)/dh).

An extreme reduction of the cross-talk noise gives rise to We now study the effect of thb term by settingc=d
the occurrence of the super retrieval state as shown by the 0. Note that one cannot set- 0 becauséc must be 0 as
region belowe, in Fig. 2. In the super retrieval phase one was mentioned in Sec. Ill.
has variances®—+0 as a result ofU——o. In other In the SCSNA equationh appears only in the equation
words, noise in the local fields vanishes and memory refor r Eq. (47), that is, in the variance?(=ar) of noise in
trieval without errors ensues for the local learning rule of thethe local fields, which has a contribution proportionalbto

1. Increase in the variance of noise due to b
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T ()

(b)
FIG. 4. Overlapm plotted againsto under the conditiona

=0.05 and#=0.3 fora=c=d=0. The solid line represents the
result of the SCSNA in the limit oN—o. WhenN is finite, we
obtain the approximations that are plotted with the broken lines.
Open circles and closed circles represent the average of ten results
of numerical simulations wittN=250 andN= 1000, respectively.

from the b dependent asymmetric term df . The b term
turns out to play the role of noise in the process of memory
retrieval. In view of the fact thatk//N)Z ,»/ obeys a
Gaussian distribution with site varied, theb term can be
viewed as synaptic noise.

We show in Fig. 4 the overlam obtained by the SCSNA
(solid line) as a function ob under the conditior#=0.3 and
a=0.05. The level part of the line corresponds to super re- FIG. 5. Phase diagrams showing the storage capacity plotted
trieval states, which will be studied later. Noting that the againstb with (a) #=0.3(b) 6= for a=c=d=0. . are obtained
solutions of the SCSNA equation are symmetric with respecby numerical simulations witi=1000.
to b, we observe that the results of numerical simulations
with N=250 andN=1000, which are plotted with open 0,105 Ba) and 5b) show thata, decreases with in-
circles and closed circles respectively, are not in good agree'reasindb| as was expected from the nature of theerm
ment with the results of SCSNA. It is because the number o T i . o
neuronsN we used is too small to approximate the result hena=0, this synaptic noise has no effect on the behavior
obtained in the thermodynamic limil—o. This can be of the network, as can be seen from E&7).
seen more clearly, when we observe the finite-size effect by
restoring&(b//N)X, which has been neglected in the local 2. Super retrieval occurs even when#0

fields because of the limN—: we replace Eq(41) by Even in the presence of theterm yielding the synaptic
noise of the form i§/ \/N)Eﬂn{‘, one can observe the occur-
rence of the super retrieval phase as has been shown in Fig.
. (51)  4:in the super retrieval phase, where the varianéeof
noise vanishes in the local fields, overiapdoes not depend
on b, as is represented by the level line in Fig. 4. The oc-
Then we obtain th&l-dependent results, which are displayedcurrence of the super retrieval phase can be more directly
by the broken lines in Fig. 4. We see that the theoreticatonfirmed by the local-field distribution. We show the local-
result for eachiN becomes in good agreement with the cor-field distributions obtained with numerical simulations in the
responding result of numerical simulations and also that thease of a super retrieval and normal retrieval state in Figs.
largerN becomes, the smaller is the difference between thé(a) and Gb), respectively. One can observe quite sharply
values ofm for N=o and for finite N. This supports the peaked components of the local-field distribution exhibited
theory that the SCSNA result represented by the solid line iby the super retrieval state. Note that the local-field
approached in the limiN— oo, distribution is also given by Ed50). Since at first glance the
Figures %a) and 5b) are the phase diagrams on the b term simply generates the additional component
—a plane with §=0.3 andf§= respectively, wherex. is  [(1/N)Z;x;][(b/ N)E#n{‘] proportional to the synaptic
seen to slightly warp because of finité Taking the finite noise in the local fields, the occurrence of vanishing noise
size effect into account, we can concluglg= @ in the case  o®>— +0 is somewhat surprising. Equati¢d?) implies that
of = when the limit ofN—« is taken. However, in the the pure noise arising from theterm is renormalized so that
case of#=0.3, a, is smaller tharw, because retrieval solu- its variance is given by141—(1—a?)U}?]ab?X?(1—a?)
tions of the SCSNA may get unstable in the case of small instead ofaX2b?(1—a?). This renormalization of noise is

b
Y(&,2)=F| ém+ ¢ = X+a dX+arz+TY

IN
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FIG. 6. Local-field distributions obtained by numerical simula-  FIG. 7. (a) Phase diagram on the- S plane showing the region
tions withN= 1000 fora=c=d=0 under the conditio®=0.3 and  in which solutions of the SCSNA equation are allowed to exist
a=0.05. (a) b=1 (super retrieval (b) b=3. under the conditiorr=0.1, §=0.3, a=b=0, andd=—4; R rep-

resents the retrieval phase, and FSR the fictious super retrieval
essential for the super retrieval phase to occur, sliee phase(see_texl S=0 in the fictious super retrieval phase gives th_e
— = can make the so produced noise vanish. super retrieval state. We have (;arrled Qut 250 simulations with
It is worthwhile referring to the case where one simpIyN:1000 for eacte. ObservingS with the aid of Eq.(48), we plot

adds random noise having no correlations with the store em with crosses when_ the network succeeded in retrieval.
atterns to synaptic couplings instead of the synaptic nois Crosses sometimes look like a bar because of too many crpsses.

P . ) Plot of the success rate calculated from the results of numerical

due to theb term. In such a case, the super retrieval phas imulations in Fig. %)

cannot be allowed to occur, since uncorrelated random noise

does not undergo the renormalization of ndigg

The phase boundary of the super retrieval phase can eas- C. Sample-dependent behavior due t@

ily be obtained by taking the limit>— +0 in Egs.(41)— We turn to study the effect af. We are forced to sdt
(47) with c=0 (Appendix A). A set of equations fotty and =0 as has been noted in Sec. lll. In the case#f0, we
Z5(1) reads should focus our attention to theS term in the local fields,

which is a sample-dependent quantity and accordingly not
definitely determined?25]. The role played bycS can be
o+ Zo (1—a?) examined on the basis of the phase diagram that is obtained
(52 by assuming the S to be a parameter in the SCSNA equa-
tions (41)—(47).
The region enclosed by the thick lines in the phase dia-
L gram of Fig. 7a) is the expected retrieval phase on th&
_1+a 2 plane for which solutions wittm#0 of the SCSNA equa-
IO[_m’Zg(l)]_2_%“1[_00’23(1)]} "~ 2(1-a) tions exist in the case o=0.1, §=0.3, a=0, andd=
) —4. This expected retrieval phase includes the fictitious su-
X{lo[ —e,z5(1)]} (53 per retrieval phase that is expected to occur for smallth-
out considering the relatio(84) betweenS andU. We car-
ried out a number of numerical simulations for each value of
¢ and observeds with the aid of Eq.(48). When the net-
works resulted in a successful retrieval, we plotted the result-
—(1-a)(1+a)+ agyd<O. (54 ant value ofS againstc in the c-S phase diagram of Fig.

1+a

> |o[—00123(1)]:m,

2

together with
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7(a). We see that, in genera§ distributes in the interval D. Removal of reversed states

predicted by the SCSNA. _ o In this section we study the problem of removing a kind
Then our interest is in knowing hové distributes, o spurious state, which appears as states corresponding to
namely, the probability density &. Although one may ex-  reyersed patterns also in the usual Hopfield model, by em-
pect thatS obeys a Gaussian dlstr|bpt|on with mean O, it is ploying the effect of thes term. First, we define a reversed
not the case. As has been shown in Fi(a)7S has some  gate as an equilibrium one with<0, which corresponds to
bounds and should obey a certain distribution that is Nofne retrieval of reversed patterns. Whenever a network has an
Gaussian. Obtaining the distribution 8fexactly is quite a  qq transfer function, it exhibits the property that there can
formidable task, sincé& appears in the local fields that de- .gexist a retrieval state, say, with overlapand a reversed
termine the SCSNA equation and it also has to satisfy thg)ne with overlap—m at one time. The reason is that, if
relation xi(t) is a solution of the dynamic&) with an odd transfer
function, —x;(t) is also its solution. Here we call the above
2 XL (55) property symmetry of reversed retrieval.
u#1 JFi Furthermore, irrespective of the shape of a transfer func-
tion, networks can also have the symmetry of reversed re-
Then we are forced to try to approximate the probabilitytrieval, i.e., coexistence of a retrieval and reversed state with
density. AlthoughU and q are functions ofS, we neglect the same size din|. For example, a network with the well-
their dependence o8 by assuming that they only exhibit a known Hebb rule, for which
weak dependence o Then, from Eq.(34), we obtain an 1 1
approximation for the probability density: Jii =N Eﬂl giﬂglﬂzﬁ Eﬂl (— & (=& (58)

S{1-(1-a*)V[s]}=

Zl -

ProlS) = 1 exp( B 3_2) (56) holds with (£)=0, exhibits the symmetry of reversed re-
27 20°%) trieval. This can easily be confirmed by an argument given
below or direct inspection of Eq$41)—(47).
In the case of the synaptic couplingg), we note the

where relation
) a(1—a?) J;({&,a,c,d)=3;({—&,—a,—c,d) for all i#]
4 “A-(1-a)up? q. (57 (59

to hold, if b=0. In this case, using the relatid9), we

The distribution(56) can give a rough estimate for that ob- KNOW that lettingm” be an (_)verlapjor a retrieval state
tained by numerical simulations in the case of lamyéal-  {Xiti-1,.n Of the network withJ;;({§'}, —a,—c,d), the

though not shown heye {Xi}i=1.. .~ becomes aretrieval state of another network with
It is noted that one can specify an exact probability denJ;;({},a,c,d) (é=—¢') yielding the overlap m
sity of Sin the super retrieval phase. Owing to thedepen- =1/NZ;(§—a)x;=—m'’. Then it turns out that the network

dence ofS [Eq. (34)], the network withc#0 can indeed with Jij({é},a,c,d) has a reversed state having negative-
have the genuine super retrieval states vidth0 in the fic- valued overlap £ m’). Note that one cannot expect any
titious super retrieval phase in Fig(aJ: the required condi- more that networks witla# 0 or c#0 exhibit the property
tions U— — o for the occurrence of the super retrieval phaseof symmetry of reversed retrieval under the use of the trans-
now yields S—0. Then, properties of the network do not fer function(3). Based on the above discussion, we consider
exhibit sample dependence in the super retrieval phase. Thike problem of whether one can substantially remove re-
explains the narrow distribution & aroundS=0 obtained versed states of the network with 0, which exhibits asym-
by numerical simulations in the super retrieval phfisy.  metrical dependence of the strage capacitycon
7@]. Now assuminga=0, we give in Fig. 8a) the phase dia-
Figure 1b) shows the success rate, which is the relativegram together with the results of numerical simulations for
frequency of obtaining successful retrieval. We can expecteversed states of the network of Fig. 7. Figutb)&hows
that if an interval ofS for which solutions of the SCSNA the success rate. Note that the phase diagram is given by the
equations exist includeS=0, the success rate takes high symmetric transformation of Fig.(& with respect to the
value in view of the probability density56). In the super origin.
retrieval phase, the success rate is one because the value ofLet us give attention to the interval Gsk=<0.7 in Figs. 7
S is concentrated oi$=0 with probability one. However, and 8. In the interval, a high success rate for retrieval states
the success rate with Gs& is low because of instability of is attained as seen in Fig(bj, while Fig. 8b) shows that the
the solutions of the SCSNA equation. Note that, in the limitsuccess rate for the reversed state is fairly low. We see that
N—oo, the success rate in the super retrieval phase takagversed states are almost removed in this interval.
either 0 or 1 depending on the stability issue. On the other In Figs. 7 and 8, we incorporated the ferromagnetic inter-
hand, in the case of interval<0.5 (which corresponds to action, i.e., thed term of the synaptic couplings with an
the normal retrieval phageas|c| decreases, the success rateappropriate magnitude to enhance the degree of removing
is expected to decrease continuously because of the samlee reversed states. As can be seen from(B2), assuming
dependence, even in the limit &f— oo, m~ X for m>0 we observe that works in the local fields in
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that the presence of theterm still allows the super retrieval
state to remain in existence. This is a consequence of the fact
that theb term made of the stored patterns undergoes inter-
ference with the symmetric part df; given by the Hebb rule
and the resultant noise due to thegerm gets renormalized
with the reduction factor proportional to {I/—(1
—a?)U}?, which is crucial for the occurrence of the super
retrieval[see Eq(37)]. As long as the system is in the super
retrieval state, the static properties of the network are inde-
pendent of values db [i.e., m(b)=cons{.

The asymmetric coupling term with has been shown to
have a characteristic feature of yielding a site-independent
but pattern-dependent componerts in the local fields of
neurons, which makes the behavior of the networks sample
dependent. In the presence of sucterm, the storage capac-

L A e B B A s e R ity cannot be determined within the context of the SCSNA.
Instead, we have demonstrated that the SCSNA can give the
bounds for the size of theS to qualitatively explain the
statistical nature of sample dependence of the network with
c# 0. It is worth noting that even with this type of asymmet-
ric coupling included, one can observe the occurrence of the
super retrieval state, in which the pattern-dependent compo-
nentcS vanishes.

We note that the noise-renormalization procedure in-
volved in the SCSNA is essential to correctly evaluate the
noise components in the local fields also in the presence of
asymmetric couplings. In particular, it is the noise renormal-
0.5 1 ization procedure that elucidates the fact that setting O

does not make any sense, because one cannot draw such
_ conclusion by simply looking at the expression .
_FIG. 8. () Same as Fig. (8 for reversed statesb) Same as Finally, we discuss the stability problem of the network
Fig. 7(b) for reversed states. dynamics associated with the introduction of the synaptic
] ] ) ] ) couplings withb or ¢ term in the case where a transfer func-
conjunction withc in the formc+ad. Roughly speaking, tjon is of sigmoidal type including the case 6t in Eq.
d plays the role of shifting the phase diagram on th&  (3). As far as numerical simulations on the dynam(isare
plane for retrieval states along the axis by an amount concerned, the network with+ 0 andc=0 is stable enough
—ad. to exhibit relaxational motions to approach one of fixed-
point-type attractors. Such mild behavior may be explained
V. SUMMARY AND CONCLUDING REMARKS by the existence of a function that plays the role of the so-
. ] ] ~_ called Lyapunov function under the restricted condition that

We have investigated the behaviors of assomauvg##lmu(t):o(l) hold and the limitN—« be taken, as
memory networks with the nonmonotonic transfer functionsshown in Appendix B.

(3) and the asymmetric synaptic couplin@s. In the case of On the other hand, although numerical simulations on the
small 6, we have confirmed, even for asymmetric couplingsnetwork withc#0 and the positive-valued transfer function
with b#0 or c#0, the occurrence of enhancement of the(#=) vyield its convergence to fixed-point-type attractors
storage capacity as well as of the phase transition phenonirrespective of whether memory retrieval is successful or not,
enon in which the super retrieval phase manifests itself as the network withc# 0 indeed happens to exhibit periodic or
result of the vanishing of noise’— +0 in the local fields.  aperiodic oscillation$25,27] (not shown heredepending on

We have elucidated the roles played by the asymmetridhitial condition_s in the_ case of more general sigmoidal-type
components with parametets and ¢ in the synaptic cou- transfer functions, like F(u)=3{(1-p)tanh(u)+1+p}
plings. The asymmetric term with coefficiebt (b term), ~ With p<<0. The occurrence of such temporal oscillations in
which can be viewed as a kind of asymmetric synaptic noisel'® case where memory retrieval fails is, however, beyond
has been shown to give rise to part of the noise in the locai"® Scope of this paper. Putting together the appearance of
field varying from site to site. We have observed that ad!® Sample dependence as well as the possibility of the os-
|b| is increased, noise variane€ in general increases, let- cillatory behavu_)r, the network with asymmetric _coupllngs
ting the storage capacity decrease. In other words, introdu%ue to the learning based on thg presynaptlc activity seems to
tion of theb term in the synaptic interactions, in most cases, e able to show po?enually rich variety of behavior of
degrades the network performance as an associative memoR)€mory recall dynamics.

We, however, would like to emphasize the effect of the syn-
aptic noise having correlations with the stored patterns on the
appearance of the super retrieval phase. Unlike the case of This work is supported by Grant-in-Aid for General Sci-
adding random noise having no correlation with the storedentific Researcli07832008 from the Ministry of Education,
patterns to synaptic couplings, we have obtained the resuBcience and Culture.

success rate
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APPENDIX A: DERIVATION OF EQUATIONS
DETERMINING THE BOUNDARY
OF THE SUPER RETRIEVAL PHASE

Assuming the condition- #<I"'<0, which applies in the
region of interest, we derive the equations determining the

boundary of the super retrieval phase. First we solve(&l).
to obtainY(&,z) for the transfer functiorg3). Defining

M(&)=(é—a+c)m+adX+cCS, (A1)
we have
0, z<zi(§)
M(€)+ \/_rz
Y(g,z): _(gfa’ Zl(§)<2<22(§)'
1, zy(8§)<z<z3(¢)
0, z(é)<z
(A2)
where
M)
Zl(g)_ \/E ) (A3)
—I'=M(§)
= > Ad
z5(€) Jar (A4)
and
r
0-5-M()
z3(8)= T (AS5)
Using this, Eqs(42)—(45) are written in the form
M
m=<@—a{——§2muﬂazxa]
r
- T\/a_ |1[21(§)122(§)]+|o[22(§)123(§)]}>,
(AB)

M
u&ﬁ<~%9mma@@k4£uma@@]

+1 1[22(5),23(5)]> ; (A7)

M
x=< - %f) lo[21(£),25(€)]— @ 11[21(§),22(8) ]

+|o[22(§)123(§)]> (A8)

and

7411
M(&)? 2M
F—§?w4&4m+—%¥ﬁmm&um
r
+%ummhwhwu&mm) (A9)
where
L)
|o[21122]=f Dz1, (A10)
22
Il[zl,zz]zf Dz z (A11)
and
|2[z1,zz]=f22Dz 2. (AL2)

When in the normal retrieval phase one approaches the
boundary of the super retrieval phase, we have

r—+o0, (A13)
U—s —oo, (A14)
z21(—1),2,(—1),z3(—1)— + oo, (A15)
21(1),25(1)— — (Al6)
and

Z5(1)—finite (A17)

Then, from Eqs(A5) and(A17), one has
M(1)— 60— g (A18)

Substituting Eqs(A13)—(A17) into Eqgs.(46) and (A6)—
(A9), we obtain the equations that hold on the boundary of
the super retrieval phase:

1+a
m=—— (1—a)lo[—»,z3(1)],

5 (A19)
1+
U ar == [~ (1)), (A20)
l1+a
X= 2 |O[—OO,23(1)], (A21)
1+a
a="5— lo[—=23(1)] (A22)
and
I'=—a(1-a?. (A23)
From Egs.(A19) and (A21) we have
m=(1-a)X. (A24)
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Because of Eqsi47), (A13), (Al4), (A20), and (A21), we
have

(1 a)2

q= {11[ —,z5(1) ]}

1+a

ey

—o0,z5(1) ]}% (A25)

From Egs.(Al), (A18), (A23), and(A24) we have

(1-a) 0—Sc+%(1—a2)

M= i—a(i-atc)tad =  A%0

Then, from Eqs(A19), (A22), (A25), and(A26) we obtain

o
0—Sct — (1—a?)

1+a B 2
ol =2 D)= (T —at o)+ aud
(A27)
and
1+a 5
lo[ —0,z3(1)]= Day {1 —o,z3(1) ]}
2
—m{lo[—w,zs(l)]}z,
(A28)

where ay denotesa on the boundary of the super retrieval

phase.
On the other hand, because of E¢Al), (A3), andz;
(—1)— + [Eq. (A16)], we have

(—1-a+c)m+a dX+cS<O. (A29)
Because of Eq(A18), this is written in the form
r
0— >~ 2m<0. (A30)

Substituting Eqs(A23) and (A26) into this, we have

{—(1—-a)(1+a—c)+agd}{ 6+ % (1—a2)}

<-2(1-a)Sc (A31)

Then solving Eqs(A27) and (A28) for aq and zz(1)

MASAHIKO YOSHIOKA AND MASATOSHI SHIINO

55
under the condition EqA31), we get the boundary of the
super retrieval phase. Setting=0 in Eq.(A27), (A28), and
(A31) gives Egs.(52)—(54).

APPENDIX B: EXISTENCE OF A FUNCTION PLAYING
THE ROLE OF A LYAPUNOV FUNCTION FOR
THE NETWORK WITH b#0 AND c=0
UNDER A RESTRICTED CONDITION

AssumingF[x] to be sigmoidal, we introduce the func-
tion

E(Xl,...,XN,X):_%E ‘]S
i1 #]

(B1)

with x;=F[u;], X=(1/N)Z;x;, andJ] denoting the sym-
metric part ofJ;; . The dynamical equatloﬁ?) can be written
asu;=— JE/dx;|x. We then obtain

JE 2
s el ()
1 0E b
w3 FSak) e

When the conditiorE ,.,m*(t) =0O(1) is satisfied as in the
case of the usual retrieval conditi¢h4), we have

dE
T3

i '“‘)(ax ®3)

2
)so
X

in the limit N—oo.
It is noted, however, that setting an initial condition as
—F‘l[(b/\/ﬁ)(Eﬂgi“)] breaks the above-mentioned con-
dition.
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