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Properties of associative memory analog neural networks with asymmetric synaptic couplings

Masahiko Yoshioka* and Masatoshi Shiino†
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Using the self-consistent signal-to-noise analysis, we study fully connected analog neural networks having
asymmetric synaptic couplings and positive-valued nonmonotonic transfer functions. Asymmetric synaptic
couplings we assume are based on random patterns with biasa and given byJi j5(1/N)(m$(j i

m2a)(j j
m

2a)1(b/AN)(j i
m2a)1c(j j

m2a)1(d/N)%, whereN is the number of neurons. We find that the synaptic
interaction term of memorizing the postsynaptic activity~b term! and that of the presynaptic activity~c term!
respectively, give rise to renormalized noise and a renormalized pattern-dependent but neuron-independent
component in the local field of neurons, with the latter making the network behavior sample dependent. An
enhancement of the storage capacity and the super retrieval phase due to the use of nonmonotonic transfer
functions are shown to occur as a result of renormalization of noise even in the presence of the asymmetric
synaptic couplings.@S1063-651X~97!05306-3#

PACS number~s!: 87.10.1e, 05.90.1m, 05.70.Fh, 07.05.Mh
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I. INTRODUCTION

Since the important contribution in Hopfield’s paper@1#,
great progress has been made in the field of neural netw
theory @2–7#. To date most studies of physical models
associative memory neural networks have been conducte
taking advantage of the existence of a Lyapunov function
energy function@8#, which enables one to employ a powerf
and systematic method of statistical mechanics@9–11#.
Model neural networks with energy functions are construc
on the basis of the assumption of introducing symmetry
the scheme of synaptic couplings between neurons. Syna
couplings with a certain learning rule are a major ingredi
of attractor networks of associative memory for recalli
stored patterns. Conveniently assumed in extensive rese
is the symmetric Hebb learning rule@12#. Use of it has been
proved to be able to capture essential features of attra
networks of associative memory models at the cost of b
logical realism.

One may, however, hope to know what will happen to
behavior of networks with asymmetric couplings, which a
ubiquitous in biological nervous systems. Previously Pere
@13# proposed the asymmetric couplings

Ji j5
1

N (
m

$Aj i
mj j

m1Bj i
m1Cj j

m1D%, Jii50, ~1!

whereN and$j i
m% respectively represent the number of to

neurons and a set ofP random patterns taking either21 or
11, to investigate the storage capacity of an associa
memory model that has biological relevance regarding s
aptic couplings. Assuming the updating dynamics of the n
work to be given by the stochastic dynamics, he aimed to
insights into the effects on the behavior of memory recall
the synaptic interaction terms responsible for memoriz
postsynaptic~B term! and presynaptic~C term! activities.

*Electronic address: myosioka@apneuro.ap.titech.ac.jp
†Electronic address: mshiino@ap.titech.ac.jp
551063-651X/97/55~6!/7401~13!/$10.00
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Because of the inadequacy of the replica method in dea
with the stochastic neural networks without energy fun
tions, Peretto resorted to a different approach without rep
calculations to approximately solve the problem. He notic
theC term to be the most influential for limiting the size o
the storage capacity: with increasingC, the storage capacity
of the network with input-output function of tanh@bu# de-
creases appreciably.

We note here that theB term and theC term may be
viewed as a kind of asymmetric synaptic noise, each
which seems to contribute a noise component in the lo
fields of neurons, and specifically that the latter will give ri
to a pattern-dependent but neuron-independent compon
which Peretto did not address.

We would like to elaborate on the above issues by form
lating the problem anew. Taking advantage of our system
method of the self-consistent signal-to-noise analy
~SCSNA! @14,15#, which is capable of dealing with analo
networks @7,8,10,11,14–23# with a transfer function of an
arbitrary shape including the case where no energy funct
exist @14,15,19–22#, we consider analog networks with th
synaptic couplings given by Eq.~1!. In view of biological
relevance we choose a transfer function representing n
ron’s mean firing rate to be positive valued. When a trans
function is not an odd function of the membrane potential
a neuron, the scaling withN for theB term of Eq.~1! has to
be taken differently from the case studied by Peretto, beca
the site average of neuron output does not vanish for lac
symmetry with respect to reversing the sign of the outp
Taking proper scalings needed for the terms of Eq.~1!, we
investigate their contributions to the local fields of neuron

Our aim in the present paper is, first, to evaluate, us
SCSNA, the universal effects of theB term and theC term
on the behavior of the storage capacity, and second, to
amine the problem of whether the super retrieval st
@15,20# is allowed to remain in existence in the presence
the above types of asymmetric couplings, when nonmo
tonic transfer functions are chosen appropriately.

Analog networks with nonmonotonic transfer function
which are obtained from sigmoidal functions by cutting o
7401 © 1997 The American Physical Society
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7402 55MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
the output activity of a neuron, have recently attracted m
attention in the light of improving network performances
an associative memory@15,19–24#, although in such net-
works the usual type of Lyapunov function does not ma
sense to ensure the stability of memory retrieval. They
hibit, in general, an enhancement of the storage capa
compared to the Amit, Gutfreund, and Sompolinsky~AGS!
value of 0.14@9# for the case of sigmoidal transfer function
an extreme reduction of the number of spurious states,
the occurrence of the super retrieval states, when the s
metric Hebb rule is incorporated into the synaptic couplin

The super retrieval state is a retrieval state in which a p
noise component in the cross-talk noise generated by
interference among an extensive number of stored patt
vanishes@15,20#. Its occurrence is a kind of phase transitio
phenomenon, which directly reflects the effect of no
renormalization for the local fields of analog neurons w
nonmonotonic transfer functions having a steep nega
slope. The outcome of the appearance of the super retri
state is that memory retrieval without errors is possible e
in the case of an extensive memory loading under the lo
learning rule of the Hebb type. We are interested particula
in how a noise component arising from theB term or the
C term is renormalized to vanish, leading to the occurre
of the super retrieval state for certain nonmonotonic tran
functions.

The paper is organized as follows. In Sec. II, we form
late the model of analog networks that have the asymme
synaptic connections of Eq.~1! with proper scalings withN
and positive-valued transfer functions including the no
monotonic case. In Sec. III, we develop the SCSNA to obt
a set of order parameter equations for retrieval states.
SCSNA presented here takes a different scheme from
original one in that the noise renormalization procedure p
ceeds without introducing overlaps with nonretrieved p
terns each of which is of order 1/AN, yielding the same
result as that of the original version. We show that the co
istence of theB andC terms in the synaptic couplings make
the network behavior illegitimate because of the appeara
of a diverging noise term in the largeN limit. In Sec. IV we
present the results of our analyses on the behaviors of
networks with asymmetric synaptic couplings based on
ther theB term orC term. Part of the present work concer
ing the effect of theC term was already reported elsewhe
@25#. In addition to the effects of noise from theB term or
C term, we also study the possibility of removing the r
versed states as a kind of spurious one by employing
effect of C term whose existence makes the synaptic c
plings asymmetric with respect to reversing the sign of
stored patterns. In Sec. V we give a brief summary and
marks.

II. MODEL OF NEURAL NETWORKS
WITH ASYMMETRIC COUPLINGS

The neural networks we study are analog netwo
@10,11,14,15,17,18# which consist ofN neurons. Denoting
the membrane potential of neuroni by ui , we assume tha
output signals of neuroni are described by its mean firin
rateF@ui #, which is called a transfer function. Synaptic co
plings Ji j connect the output of neuronj to the input of
h
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neuroni . Then, with these definitions, the dynamics ofui is
described by the differential equations

d

dt
ui52ui1(

jÞ i

N

Ji j F@uj #, i51,...,N. ~2!

In biologically plausible neural networks,F@u# should
take a positive value because of what is meant byF@u#. In
view of this, we assume the transfer function to be

F@u#51@u#21@u2u#, ~3!

where 1@x# denotes the Heaviside function andu a positive
parameter representing cutoff of activity of a neuron. Wh
settingu5` gives a positive-valued sigmoid transfer fun
tion, theF@u# with u,` defines a nonmonotonic transfe
function as shown in Fig. 1. The reason for considering n
monotonic transfer functions is that, in the case of smalu,
one can observe good network performance such as an
hancement of the storage capacity and occurrence of the
per retrieval states@15,19–23#.

The networks are assumed to memorizeP random pat-
terns, which are represented byj i

m ~i51,...,N, m
51,...,P! taking either21 or11 according to the probabil
ity distribution

Pr~j i
m!5

12a

2
d~j i

m11!1
11a

2
d~j i

m21!, ~4!

where biasa is the average ofj i
m.

The synaptic couplingsJi j we assume are asymmetr
ones that are obtained by modifying what were previou
discussed by Peretto@13#. The asymmetric learning rule~1!
proposed by Peretto has the property that, by adjustingA,
B, C, andD, it can be equivalent to any learning rule of th
form

Ji j5
1

N (
m51

P

DJ~j i
m ,j j

m!, ~5!

whereDJ(j i
m ,j j

m) is a function ofj i
m and j j

m, becausej i
m

andj j
m take only21 or 11.

SettingA51 in Eq. ~1!, we further scaleB, C, andD
appropriately with respect toN so that the network with the
transfer function ~3! behaves properly in the limit o
N→`. Noting that (1/AN)Smj i

m and (1/N)S iF@ui # tend re-
spectively to a random and constant quantity of order un
in the limit N→`, we have

FIG. 1. The shape of the transfer function investigated in
present study.



s
w

u
th
er

m
fo
lv

site.
e of

elu-
-

cal

d

is,

55 7403PROPERTIES OF ASSOCIATIVE MEMORY ANALOG . . .
Ji j5
1

N (
m51

P H j i
mj j

m1
b

AN
j i

m1cj j
m1

d

NJ , Jii50. ~6!

In the case ofaÞ0, introducingh i
m5j i

m2a, we have,
instead of Eq.~6!,

Ji j5
1

N (
m51

P H h i
mh j

m1
b

AN
h i

m1ch j
m1

d

NJ , Jii50,

~7!

which is the learning rule to be investigated in what follow
We define several quantities to be used later. First

define the loading rate of memorized patterns as

a5
P

N
. ~8!

The overlap with patternm is defined as

mm5
1

N (
i51

N

~j i
m2a!F@ui #, ~9!

which takes value of order unity@O(1)# when patternm is
retrieved. This overlap is, however, inappropriate to meas
the degree of quality of retrieval because of the shape of
transfer function as considered in the present study. Th
fore we define the tolerance overlap@15#

gm5
1

N (
i51

N

j i
m sgn@ui #, ~10!

which takes unity if patternm is completely retrieved.
Setting

xi5F@ui #, ~11!

we define the local field of neuroni as

hi5(
jÞ i

Ji j xj . ~12!

III. SELF-CONSISTENT SIGNAL-TO-NOISE ANALYSIS

We analyze the above-described networks in the li
N→`. Assuming that the networks approach equilibrium
a long time to retrieve a desired pattern, we begin with so
ing the equations of equilibrium state

xi5F@hi #, i51,...,N ~13!

under the condition that

m15O~1!, mm5O~1/AN!, m52,...,P, ~14!

where pattern 1 is selected as a retrieved one.
Substituting Eq.~7! into Eq. ~12!, we have

hi5~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD xj , ~15!
.
e

re
e
e-

it
r
-

where

X5
1

N (
i
xi . ~16!

The third term on the right-hand side~RHS! of this equation
represents the cross-talk noise that varies from site to
This noise does not obey a Gaussian distribution becaus
the correlations betweenh i

mh j
m1(b/AN)h i

m1ch j
m , andxj .

The structure or characteristic of the noise term can be
cidated by the SCSNA@14,15#, which conducts renormaliza
tion of noise.

The SCSNA has its basis on the assumption that the lo
fields ~15! take the form@14,15#

hi5~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD txj

m1Gxi .

~17!

In this equation, a super scriptm of xj
m denotes thatxj

m has
almost negligible correlations with patternm, which can in-
deed be neglected in the limitN→`, and differs only by
O(1/AN) from xj . Such a reduction of correlation is carrie
out by removing the contribution of patternm to the local
field of neuronj as is done below. The crux of our analys
SCSNA, is to determinet andG self-consistently.

Using Eqs.~13! and ~17!, xi is rewritten as

xi5FF ~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD txj

m1Gxi G .
~18!

We solve this equation forxi to obtain the form

xi5F̃F ~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD txj

mG . ~19!

Substituting this into local field~15!, we have

hi5~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD F̃@ h̃ j #,

~20!

where

h̃ j5~h j
11c!m11a dX

1
1

N (
nÞ1

(
kÞ j

S h j
nhk

n1
b

AN
h j

n1chk
nD txk

n . ~21!
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Now we carry out the reduction of correlations. Perfor
ing a Taylor expansion ofF̃@ h̃ j # of Eq. ~20!, we have

hi5~h i
11c!m11a dX

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD xjm

1
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD

3F̃8@ h̃ j
m#

1

N (
kÞ j

S h j
mhk

m1
b

AN
h j

m1chk
mD txk

m ,

~22!
he

e

n.
-where

h̃ j
m5~h j

11c!m11a dX

1
1

N (
nÞ1,m

(
kÞ j

S h j
nhk

n1
b

AN
h j

n1chk
nD txk

n ~23!

and

xj
m5F̃@ h̃ j

m#. ~24!

Let us take notice of the fourth term on the RHS of E
~22!:
1

N2 (
mÞ1

(
jÞ i

(
kÞ j

S h i
mh j

m1
b

AN
h i

m1ch j
mD S h j

mhk
m1

b

AN
h j

m1chk
mD F̃8@ h̃ j

m#txk
m

5
1

N2 (
mÞ1

(
jÞ i

(
kÞ i , j

S h i
mh j

m1
b

AN
h i

m1ch j
mD S h j

mhk
m1

b

AN
h j

m1chk
mD F̃8@ h̃ j

m#txk
m

1
1

N2 (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD S h j

mh i
m1

b

AN
h j

m1ch i
mD F̃8@ h̃ j

m#txi
m . ~25!
ne
Sincej i
m obeys the probability distribution~4!, in the limit of

N→`, the RHS of the above equation is rewritten in t
form

~12a2!U
1

N (
mÞ1

(
kÞ i

S h i
mhk

m1
b

AN
h i

m1chk
m1

bc

AND txk
m

1a~12a2!2Utxi , ~26!

where

U5
1

N (
j
F̃8@ h̃ j

m#. ~27!

Note thatU does not depend onm in the limit N→`.
Now we focus our attention to the term

~12a2!U
1

N (
mÞ1

(
kÞ i

bc

AN
txk

m ~28!

appearing in Eq.~26!. This term is seen to diverge in th
limit of N→` when one notesxk

m'xk . It means that our
networks cannot retrieve any pattern whenN is infinite, if
bcÞ0. Thus we must keepbc50: b50 or c50 to make
the network properly function, and we do so from now o

Then, from Eqs.~17!, ~22!, and~26!, we obtain
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD txj

m1Gxi

5
1

N (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD

3$11~12a2!Ut%xj
m1a~12a2!2Utxi . ~29!

Based on this equation, one can self-consistently determit
andG. It follows that

t5
1

12~12a2!U
~30!

and

G5a
~12a2!2U

12~12a2!U
. ~31!

Then, using Eqs.~17! and ~30! we rewrite the local field
as

hi5~h i
11c!m1a dX1

1

12~12a2!U

1

N

3 (
mÞ1

(
jÞ i

S h i
mh j

m1
b

AN
h i

m1ch j
mD xjm1Gxi

5~h i
11c!m1a dX1 z̄i1cS1Gxi , ~32!
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where

z̄i5
1

12~12a2!U

1

N (
mÞ1

(
jÞ i

h i
mS h j

m1
b

AND xjm ~33!

and

S5
1

12~12a2!U

1

N (
mÞ1

(
jÞ i

h j
mxj

m . ~34!

We note that whenb50, S equals the sum ofmm(m
>2):S5(mÞ1m

m, since one has in general

mm5
1

12~12a2!U H 1N (
jÞ i

h j
mxj

m

1~12a2!U
1

N (
jÞ i

b

AN
xj

mJ . ~35!

S is not a site-dependent quantity, but a sample-depen
one. The appearance of suchS in the local field~32! means
that the network withcÞ0 becomes sample dependent ev
in the limit N→`. Then a problem arises of obtaining th
probability distribution ofS. As will be discussed later, cal
culating the distribution ofS is too complicated to perform
However, onceS is known, we can evaluate the properties
the network as a function ofS. Therefore, for the time being
we treatS as a given parameter.

Pure noisez̄i obeys a Gaussian distribution with mean
and variances2, which we now evaluate. From Eq.~33! we
have

z̄i
25

1

$12~12a2!U%2
1

N2 (
m1Þ1

(
m2Þ1

3 (
j1Þ i

(
j2Þ i

h i
m1h i

m2S h j1
m11

b

AND S h j2
m21

b

AND xj1m1xj2m2.
~36!

Since we can replace the average over site by the ave
over patterns, we have

s25^^z̄ i
2&&5

a~12a2!

$12~12a2!U%2
$~12a2!q1b2X2%,

~37!

where ^^...&& denotes the average over the random patte
and

q5
1

N (
i
xi
2. ~38!

Finally we carry out the change of variables

s25ar ~39!

and

z̄

s
5z. ~40!
nt

n

f

ge

s

Then, from Eqs.~32! and ~37!, we obtain the resultan
SCSNA equation:

Y~j,z!5F@~j2a1c!m1a dX1cS1Aarz1GY#,
~41!

m5K E
2`

1`

Dz~j2a!YL , ~42!

UAar5K E
2`

1`

Dz zYL , ~43!

X5K E
2`

1`

Dz YL , ~44!

q5K E
2`

1`

Dz Y2L , ~45!

G5a
~12a2!2U

12~12a2!U
~46!

and

r5
~12a2!

$12~12a2!U%2
$~12a2!q1b2X2%, ~47!

where

S5 (
mÞ1

mm ~bÞ0!. ~48!

In these equations

E
2`

1`

Dz•••5E
2`

1`

•••
1

A2p
exp~2z2/2!dz ~49!

and^•••& denotes the average over pattern 1, namelyj, which
obeys the probability distribution~4!.

Equation ~41!, in general, admits multisolutions fo
Y(j,z). In that case one has to select an appropriate solu
of Y(j,z) among them, using the Maxwell rule, to perfor
the Gaussian integrations overz. An example of the appli-
cation of the Maxwell rule is demonstrated in Appendix A

It should be noted that the solutions (m,r ,q,X) obtained
from the SCSNA equations~41!–~47! are not always of rel-
evance, because the SCSNA is based on the fixed point e
tion ~13! alone and does not take the stability of its soluti
into account. In the case of networks with asymmetric co
plings or nonmonotonic transfer functions for which the e
istence of a Lyapunov function is not expected or known,
stability of SCSNA solutions has to be determined by n
merical simulations of the dynamics~2!.

IV. THE BEHAVIORS OF THE NETWORKS
WITH ASYMMETRIC COUPLINGS

Based on the results of the SCSNA and numerical sim
lations, we explore properties of the networks with the asy
metric synaptic couplings~7!. In the previous paper@25#, we
discussed the dependence of the network properties on
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a @26# in the presence of thec term. Settinga50 in what
follows, we are concerned mainly with the effects of theb
term and thec term.

A. An enhancement of the storage capacity
and the occurrence of the super retrieval

in the case with smallu

We first present general properties of the analog netwo
with the nonmonotonic transfer function~3! by setting b
5c5d50. The behaviors of the associative networks exh
ited by the nonmonotonic transfer function are summari
into the phase diagram on theu2a plane in Fig. 2.ãc is the
critical value of the loading rate obtained by the SCSNA, a
ac is that obtained by numerical simulations withN
51000. Whileãc5ac holds in the case of largeu, one has
ac,ãc in the case of smallu. The difference betweenãc
andac arises from the fact that the networks having a no
monotonic transfer function withu,` are not expected, in
general, to have Lyapunov functions ensuring stability of
memory retrieval and also that solutions of the SCSNA eq
tions may correspond to unstable solutions of the origi
dynamics~2!. Indeed one can observe the occurrence of
cillatory motions in the time evolution of the retrieval dy
namics of analog networks having a certain type of n
monotonic transfer functions@15#. We observe an
enhancement of the storage capacity to occur: compared
the AGS value, the storage capacityac increases asu de-
creases fromu5`.

The enhancement of the storage capacity is caused
reduction of the magnitude of the cross-talk noise that occ
as a result ofU,0 in the case of nonmonotonic transf
functions @6# @see Eq.~37!#. Note thatU measures the site
average of the derivative of the outputY(h), i.e.,
^dY(h)/dh&.

An extreme reduction of the cross-talk noise gives rise
the occurrence of the super retrieval state as shown by
region belowa0 in Fig. 2. In the super retrieval phase on
has variances2→10 as a result ofU→2`. In other
words, noise in the local fields vanishes and memory
trieval without errors ensues for the local learning rule of

FIG. 2. Phase diagram showing the storage capacity as a f
tion of u in the case ofa5b5c5d50. ãc is the storage capacity
obtained with the SCSNA, andac is that obtained with numerica
simulations. The region belowac is the retrieval phase~R!, and that
belowa0 is the super retrieval phase~SR!.
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Hebb type with an extensive memory loading. One c
verify this phenomenon by means of numerical simulatio
Figures 3~a! and 3~b! show the distributions of the loca
fields obtained by numerical simulations, respectively, in
super retrieval and in the normal retrieval phase for the sa
value a50.05. One indeed observes a distribution w
sharply peaked components in Fig. 3~a!. Because ofGxi with
G,0 in the local field~17!, the distribution forh.0 com-
prises twod-function components:

P~h!5 1
2dFh1u1

a

2G1S u1
a

2 D dFh2u1
a

2G
1S 1

22u2
a

2 D dFh2u2
a

2G , ~50!

which are a direct consequence of the application of
Maxwell rule.

B. Effect of the b term

1. Increase in the variance of noise due to b

We now study the effect of theb term by settingc5d
50. Note that one cannot setcÞ0 becausebc must be 0 as
was mentioned in Sec. III.

In the SCSNA equation,b appears only in the equatio
for r Eq. ~47!, that is, in the variances2(5ar ) of noise in
the local fields, which has a contribution proportional tob2

c-

FIG. 3. Local-field distribution obtained by numerical simul
tions with N51000 for a5b5c5d50 under the conditiona
50.05. ~a! u50.3 ~super retrieval! ~b! u50.8.
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55 7407PROPERTIES OF ASSOCIATIVE MEMORY ANALOG . . .
from theb dependent asymmetric term ofJi j . The b term
turns out to play the role of noise in the process of mem
retrieval. In view of the fact that (b/AN)(mh i

m obeys a
Gaussian distribution with sitei varied, theb term can be
viewed as synaptic noise.

We show in Fig. 4 the overlapm obtained by the SCSNA
~solid line! as a function ofb under the conditionu50.3 and
a50.05. The level part of the line corresponds to super
trieval states, which will be studied later. Noting that t
solutions of the SCSNA equation are symmetric with resp
to b, we observe that the results of numerical simulatio
with N5250 andN51000, which are plotted with ope
circles and closed circles respectively, are not in good ag
ment with the results of SCSNA. It is because the numbe
neuronsN we used is too small to approximate the res
obtained in the thermodynamic limitN→`. This can be
seen more clearly, when we observe the finite-size effec
restoringj(b/AN)X, which has been neglected in the loc
fields because of the limitN→`: we replace Eq.~41! by

Y~j,z!5FF jm1j
b

AN
X1a dX1Aarz1GYG . ~51!

Then we obtain theN-dependent results, which are display
by the broken lines in Fig. 4. We see that the theoret
result for eachN becomes in good agreement with the co
responding result of numerical simulations and also that
largerN becomes, the smaller is the difference between
values ofm for N5` and for finiteN. This supports the
theory that the SCSNA result represented by the solid lin
approached in the limitN→`.

Figures 5~a! and 5~b! are the phase diagrams on theb
2a plane withu50.3 andu5` respectively, whereac is
seen to slightly warp because of finiteN. Taking the finite
size effect into account, we can concludeac5ãc in the case
of u5` when the limit ofN→` is taken. However, in the
case ofu50.3, ac is smaller thanãc because retrieval solu
tions of the SCSNA may get unstable in the case of smau.

FIG. 4. Overlapm plotted againstb under the conditiona
50.05 andu50.3 for a5c5d50. The solid line represents th
result of the SCSNA in the limit ofN→`. WhenN is finite, we
obtain the approximations that are plotted with the broken lin
Open circles and closed circles represent the average of ten re
of numerical simulations withN5250 andN51000, respectively.
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Figures 5~a! and 5~b! show thatac decreases with in-
creasingubu, as was expected from the nature of theb term.
Whena50, this synaptic noise has no effect on the behav
of the network, as can be seen from Eq.~37!.

2. Super retrieval occurs even when bÞ0

Even in the presence of theb term yielding the synaptic
noise of the form (b/AN)(mh i

m , one can observe the occu
rence of the super retrieval phase as has been shown in
4: in the super retrieval phase, where the variances2 of
noise vanishes in the local fields, overlapm does not depend
on b, as is represented by the level line in Fig. 4. The o
currence of the super retrieval phase can be more dire
confirmed by the local-field distribution. We show the loca
field distributions obtained with numerical simulations in t
case of a super retrieval and normal retrieval state in F
6~a! and 6~b!, respectively. One can observe quite shar
peaked components of the local-field distribution exhibit
by the super retrieval state. Note that the local-fie
distribution is also given by Eq.~50!. Since at first glance the
b term simply generates the additional compone
@(1/N)( j xj #@(b/AN)(mh i

m# proportional to the synaptic
noise in the local fields, the occurrence of vanishing no
s2→10 is somewhat surprising. Equation~37! implies that
the pure noise arising from theb term is renormalized so tha
its variance is given by@1/$12(12a2)U%2#ab2X2(12a2)
instead ofaX2b2(12a2). This renormalization of noise is

.
ults

FIG. 5. Phase diagrams showing the storage capacity plo
againstb with ~a! u50.3 ~b! u5` for a5c5d50.ac are obtained
by numerical simulations withN51000.
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7408 55MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
essential for the super retrieval phase to occur, sinceU→
2` can make the so produced noise vanish.

It is worthwhile referring to the case where one simp
adds random noise having no correlations with the sto
patterns to synaptic couplings instead of the synaptic n
due to theb term. In such a case, the super retrieval ph
cannot be allowed to occur, since uncorrelated random n
does not undergo the renormalization of noise@7#.

The phase boundary of the super retrieval phase can
ily be obtained by taking the limits2→10 in Eqs.~41!–
~47! with c50 ~Appendix A!. A set of equations fora0 and
z3(1) reads

11a

2
I 0@2`,z3~1!#5

u1
a0

2
~12a2!

~12a!21a0d
, ~52!

I 0@2`,z3~1!#5
11a

2a0
$I 1@2`,z3~1!#%22

b2

2~12a!

3$I 0@2`,z3~1!#%2 ~53!

together with

2~12a!~11a!1a0d,0. ~54!

FIG. 6. Local-field distributions obtained by numerical simu
tions withN51000 fora5c5d50 under the conditionu50.3 and
a50.05. ~a! b51 ~super retrieval! ~b! b53.
d
e
e
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as- C. Sample-dependent behavior due toc

We turn to study the effect ofc. We are forced to setb
50 as has been noted in Sec. III. In the case ofcÞ0, we
should focus our attention to thecS term in the local fields,
which is a sample-dependent quantity and accordingly
definitely determined@25#. The role played bycS can be
examined on the basis of the phase diagram that is obta
by assuming thecS to be a parameter in the SCSNA equ
tions ~41!–~47!.

The region enclosed by the thick lines in the phase d
gram of Fig. 7~a! is the expected retrieval phase on thec-S
plane for which solutions withmÞ0 of the SCSNA equa-
tions exist in the case ofa50.1, u50.3, a50, and d5
24. This expected retrieval phase includes the fictitious
per retrieval phase that is expected to occur for smallu with-
out considering the relation~34! betweenS andU. We car-
ried out a number of numerical simulations for each value
c and observedS with the aid of Eq.~48!. When the net-
works resulted in a successful retrieval, we plotted the res
ant value ofS againstc in the c-S phase diagram of Fig

FIG. 7. ~a! Phase diagram on thec2S plane showing the region
in which solutions of the SCSNA equation are allowed to ex
under the conditiona50.1, u50.3, a5b50, andd524; R rep-
resents the retrieval phase, and FSR the fictious super retr
phase~see text!. S50 in the fictious super retrieval phase gives t
super retrieval state. We have carried out 250 simulations w
N51000 for eachc. ObservingS with the aid of Eq.~48!, we plot
them with crosses when the network succeeded in retrie
~Crosses sometimes look like a bar because of too many cros!
~b! Plot of the success rate calculated from the results of nume
simulations in Fig. 7~a!.
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55 7409PROPERTIES OF ASSOCIATIVE MEMORY ANALOG . . .
7~a!. We see that, in general,S distributes in the interva
predicted by the SCSNA.

Then our interest is in knowing howS distributes,
namely, the probability density ofS. Although one may ex-
pect thatS obeys a Gaussian distribution with mean 0, it
not the case. As has been shown in Fig. 7~a!, S has some
bounds and should obey a certain distribution that is
Gaussian. Obtaining the distribution ofS exactly is quite a
formidable task, sinceS appears in the local fields that de
termine the SCSNA equation and it also has to satisfy
relation

S$12~12a2!U@S#%5
1

N (
mÞ1

(
jÞ i

h j
mxj

m . ~55!

Then we are forced to try to approximate the probabi
density. AlthoughU and q are functions ofS, we neglect
their dependence onS by assuming that they only exhibit
weak dependence onS. Then, from Eq.~34!, we obtain an
approximation for the probability density:

Prob~S!5
1

A2pz
expS 2

S2

2z2D , ~56!

where

z25
a~12a2!

$12~12a2!U%2
q. ~57!

The distribution~56! can give a rough estimate for that o
tained by numerical simulations in the case of largeu ~al-
though not shown here!.

It is noted that one can specify an exact probability d
sity of S in the super retrieval phase. Owing to theU depen-
dence ofS @Eq. ~34!#, the network withcÞ0 can indeed
have the genuine super retrieval states withS50 in the fic-
titious super retrieval phase in Fig. 7~a!: the required condi-
tionsU→2` for the occurrence of the super retrieval pha
now yieldsS→0. Then, properties of the network do n
exhibit sample dependence in the super retrieval phase.
explains the narrow distribution ofS aroundS50 obtained
by numerical simulations in the super retrieval phase@Fig.
7~a!#.

Figure 7~b! shows the success rate, which is the relat
frequency of obtaining successful retrieval. We can exp
that if an interval ofS for which solutions of the SCSNA
equations exist includesS50, the success rate takes hig
value in view of the probability density~56!. In the super
retrieval phase, the success rate is one because the val
S is concentrated onS50 with probability one. However
the success rate with 0.8&c is low because of instability o
the solutions of the SCSNA equation. Note that, in the lim
N→`, the success rate in the super retrieval phase ta
either 0 or 1 depending on the stability issue. On the ot
hand, in the case of intervalc&0.5 ~which corresponds to
the normal retrieval phase!, asucu decreases, the success ra
is expected to decrease continuously because of the sa
dependence, even in the limit ofN→`.
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D. Removal of reversed states

In this section we study the problem of removing a ki
of spurious state, which appears as states correspondin
reversed patterns also in the usual Hopfield model, by e
ploying the effect of thec term. First, we define a reverse
state as an equilibrium one withm,0, which corresponds to
the retrieval of reversed patterns. Whenever a network ha
odd transfer function, it exhibits the property that there c
coexist a retrieval state, say, with overlapm and a reversed
one with overlap2m at one time. The reason is that,
xi(t) is a solution of the dynamics~2! with an odd transfer
function,2xi(t) is also its solution. Here we call the abov
property symmetry of reversed retrieval.

Furthermore, irrespective of the shape of a transfer fu
tion, networks can also have the symmetry of reversed
trieval, i.e., coexistence of a retrieval and reversed state w
the same size ofumu. For example, a network with the well
known Hebb rule, for which

Ji j5
1

N (
m

j i
mj j

m5
1

N (
m

~2j i
m!~2j j

m! ~58!

holds with ^j&50, exhibits the symmetry of reversed re
trieval. This can easily be confirmed by an argument giv
below or direct inspection of Eqs.~41!–~47!.

In the case of the synaptic couplings~7!, we note the
relation

Ji j ~$jW%,a,c,d!5Ji j ~$2jW%,2a,2c,d! for all iÞ j
~59!

to hold, if b50. In this case, using the relation~59!, we
know that lettingm8 be an overlap for a retrieval stat
$xi% i51,...,N of the network with Ji j ($jW8%,2a,2c,d), the
$xi% i51,...,N becomes a retrieval state of another network w
Ji j ($jW%,a,c,d) (j52j8) yielding the overlap m
[1/N( i(j i2a)xi52m8. Then it turns out that the networ
with Ji j ($jW%,a,c,d) has a reversed state having negativ
valued overlap (2m8). Note that one cannot expect an
more that networks withaÞ0 or cÞ0 exhibit the property
of symmetry of reversed retrieval under the use of the tra
fer function~3!. Based on the above discussion, we consi
the problem of whether one can substantially remove
versed states of the network withcÞ0, which exhibits asym-
metrical dependence of the strage capacity onc.

Now assuminga50, we give in Fig. 8~a! the phase dia-
gram together with the results of numerical simulations
reversed states of the network of Fig. 7. Figure 8~b! shows
the success rate. Note that the phase diagram is given b
symmetric transformation of Fig. 7~a! with respect to the
origin.

Let us give attention to the interval 0.1&c&0.7 in Figs. 7
and 8. In the interval, a high success rate for retrieval sta
is attained as seen in Fig. 7~b!, while Fig. 8~b! shows that the
success rate for the reversed state is fairly low. We see
reversed states are almost removed in this interval.

In Figs. 7 and 8, we incorporated the ferromagnetic int
action, i.e., thed term of the synaptic couplings with a
appropriate magnituded to enhance the degree of removin
the reversed states. As can be seen from Eq.~32!, assuming
m'X for m.0 we observe thatd works in the local fields in
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7410 55MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
conjunction withc in the form c1ad. Roughly speaking,
d plays the role of shifting the phase diagram on thec-S
plane for retrieval states along thec axis by an amount
2ad.

V. SUMMARY AND CONCLUDING REMARKS

We have investigated the behaviors of associa
memory networks with the nonmonotonic transfer functio
~3! and the asymmetric synaptic couplings~7!. In the case of
small u, we have confirmed, even for asymmetric couplin
with bÞ0 or cÞ0, the occurrence of enhancement of t
storage capacity as well as of the phase transition phen
enon in which the super retrieval phase manifests itself a
result of the vanishing of noises2→10 in the local fields.

We have elucidated the roles played by the asymme
components with parametersb and c in the synaptic cou-
plings. The asymmetric term with coefficientb ~b term!,
which can be viewed as a kind of asymmetric synaptic no
has been shown to give rise to part of the noise in the lo
field varying from site to site. We have observed that
ubu is increased, noise variances2 in general increases, let
ting the storage capacity decrease. In other words, introd
tion of theb term in the synaptic interactions, in most cas
degrades the network performance as an associative mem
We, however, would like to emphasize the effect of the s
aptic noise having correlations with the stored patterns on
appearance of the super retrieval phase. Unlike the cas
adding random noise having no correlation with the sto
patterns to synaptic couplings, we have obtained the re

FIG. 8. ~a! Same as Fig. 7~a! for reversed states.~b! Same as
Fig. 7~b! for reversed states.
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that the presence of theb term still allows the super retrieva
state to remain in existence. This is a consequence of the
that theb term made of the stored patterns undergoes in
ference with the symmetric part ofJi j given by the Hebb rule
and the resultant noise due to theb term gets renormalized
with the reduction factor proportional to 1/$12(1
2a2)U%2, which is crucial for the occurrence of the sup
retrieval@see Eq.~37!#. As long as the system is in the sup
retrieval state, the static properties of the network are in
pendent of values ofb @i.e.,m(b)5const#.

The asymmetric coupling term withc has been shown to
have a characteristic feature of yielding a site-independ
but pattern-dependent componentcS in the local fields of
neurons, which makes the behavior of the networks sam
dependent. In the presence of suchc term, the storage capac
ity cannot be determined within the context of the SCSN
Instead, we have demonstrated that the SCSNA can give
bounds for the size of thecS to qualitatively explain the
statistical nature of sample dependence of the network w
cÞ0. It is worth noting that even with this type of asymme
ric coupling included, one can observe the occurrence of
super retrieval state, in which the pattern-dependent com
nentcS vanishes.

We note that the noise-renormalization procedure
volved in the SCSNA is essential to correctly evaluate
noise components in the local fields also in the presenc
asymmetric couplings. In particular, it is the noise renorm
ization procedure that elucidates the fact that settingbcÞ0
does not make any sense, because one cannot draw s
conclusion by simply looking at the expression forJi j .

Finally, we discuss the stability problem of the netwo
dynamics associated with the introduction of the synap
couplings withb or c term in the case where a transfer fun
tion is of sigmoidal type including the case ofu5` in Eq.
~3!. As far as numerical simulations on the dynamics~2! are
concerned, the network withbÞ0 andc50 is stable enough
to exhibit relaxational motions to approach one of fixe
point-type attractors. Such mild behavior may be explain
by the existence of a function that plays the role of the
called Lyapunov function under the restricted condition th
(mÞ1m

m(t)5O(1) hold and the limitN→` be taken, as
shown in Appendix B.

On the other hand, although numerical simulations on
network withcÞ0 and the positive-valued transfer functio
(u5`) yield its convergence to fixed-point-type attracto
irrespective of whether memory retrieval is successful or n
the network withcÞ0 indeed happens to exhibit periodic o
aperiodic oscillations@25,27# ~not shown here! depending on
initial conditions in the case of more general sigmoidal-ty
transfer functions, like F(u)5 1

2$(12r)tanh(bu)111r%
with r,0. The occurrence of such temporal oscillations
the case where memory retrieval fails is, however, beyo
the scope of this paper. Putting together the appearanc
the sample dependence as well as the possibility of the
cillatory behavior, the network with asymmetric coupling
due to the learning based on the presynaptic activity seem
be able to show potentially rich variety of behavior
memory recall dynamics.
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APPENDIX A: DERIVATION OF EQUATIONS
DETERMINING THE BOUNDARY

OF THE SUPER RETRIEVAL PHASE

Assuming the condition2u,G,0, which applies in the
region of interest, we derive the equations determining
boundary of the super retrieval phase. First we solve Eq.~41!
to obtainY(j,z) for the transfer function~3!. Defining

M ~j!5~j2a1c!m1adX1cS, ~A1!

we have

Y~j,z!55
0, z,z1~j!

2
M ~j!1Aarz

G
, z1~j!,z,z2~j!

1, z2~j!,z,z3~j!

0, z3~j!,z

,

~A2!

where

z1~j!5
2M ~j!

Aar
, ~A3!

z2~j!5
2G2M ~j!

Aar
~A4!

and

z3~j!5

u2
G

2
2M ~j!

Aar
. ~A5!

Using this, Eqs.~42!–~45! are written in the form

m5K ~j2a!F2
M ~j!

G
I 0@z1~j!,z2~j!#

2
Aar

G
I 1@z1~j!,z2~j!#1I 0@z2~j!,z3~j!#G L ,

~A6!

UAar5K 2
M ~j!

G
I 1@z1~j!,z2~j!#2

Aar

G
I 2@z1~j!,z2~j!#

1I 1@z2~j!,z3~j!#L , ~A7!

X5K 2
M ~j!

G
I 0@z1~j!,z2~j!#2

Aar

G
I 1@z1~j!,z2~j!#

1I 0@z2~j!,z3~j!#L ~A8!

and
e

q5KM ~j!2

G2 I 0@z1~j!,z2~j!#1
2M ~j!Aar

G2 I 1@z1~j!,z2~j!#

1
ar

G2 I 2@z1~j!,z2~j!#1I 0@z2~j!,z3~j!#L , ~A9!

where

I 0@z1 ,z2#5E
z1

z2
Dz 1, ~A10!

I 1@z1 ,z2#5E
z1

z2
Dz z ~A11!

and

I 2@z1 ,z2#5E
z1

z2
Dz z2. ~A12!

When in the normal retrieval phase one approaches
boundary of the super retrieval phase, we have

r→10, ~A13!

U→2`, ~A14!

z1~21!,z2~21!,z3~21!→1`, ~A15!

z1~1!,z2~1!→2` ~A16!

and

z3~1!→finite ~A17!

Then, from Eqs.~A5! and ~A17!, one has

M ~1!→u2
G

2
. ~A18!

Substituting Eqs.~A13!–~A17! into Eqs.~46! and ~A6!–
~A9!, we obtain the equations that hold on the boundary
the super retrieval phase:

m5
11a

2
~12a!I 0@2`,z3~1!#, ~A19!

UAar5
11a

2
I 1@2`,z3~1!#, ~A20!

X5
11a

2
I 0@2`,z3~1!#, ~A21!

q5
11a

2
I 0@2`,z3~1!# ~A22!

and

G52a~12a2!. ~A23!

From Eqs.~A19! and ~A21! we have

m5~12a!X. ~A24!
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Because of Eqs.~47!, ~A13!, ~A14!, ~A20!, and ~A21!, we
have

q5
~11a!2

4a
$I 1@2`,z3~1!#%2

2b2
11a

4~12a!
$I 0@2`,z3~1!#%2. ~A25!

From Eqs.~A1!, ~A18!, ~A23!, and~A24! we have

m5

~12a!H u2Sc1
a

2
~12a2!J

~12a!~12a1c!1ad
. ~A26!

Then, from Eqs.~A19!, ~A22!, ~A25!, and~A26! we obtain

11a

2
I 0@2`,z3~1!#5

u2Sc1
a0

2
~12a2!

~12a!~12a1c!1a0d
~A27!

and

I 0@2`,z3~1!#5
11a

2a0
$I 1@2`,z3~1!#%2

2
b2

2~12a!
$I 0@2`,z3~1!#%2,

~A28!

wherea0 denotesa on the boundary of the super retriev
phase.

On the other hand, because of Eqs.~A1!, ~A3!, and z1
(21)→1` @Eq. ~A16!#, we have

~212a1c!m1a dX1cS,0. ~A29!

Because of Eq.~A18!, this is written in the form

u2
G

2
22m,0. ~A30!

Substituting Eqs.~A23! and ~A26! into this, we have

$2~12a!~11a2c!1a0d%H u1
a0

2
~12a2!J

,22~12a!Sc. ~A31!

Then solving Eqs.~A27! and ~A28! for a0 and z3(1)
under the condition Eq.~A31!, we get the boundary of the
super retrieval phase. Settingc50 in Eq. ~A27!, ~A28!, and
~A31! gives Eqs.~52!–~54!.

APPENDIX B: EXISTENCE OF A FUNCTION PLAYING
THE ROLE OF A LYAPUNOV FUNCTION FOR

THE NETWORK WITH bÞ0 AND c50
UNDER A RESTRICTED CONDITION

AssumingF@x# to be sigmoidal, we introduce the func
tion

E~x1 ,...,xN ,X!52 1
2(
iÞ j

Ji j
Sxixj1(

i
Exi

F21@xi #dxi

1
b

NAN (
i

(
m

j i
m
xi
2

2

2(
i

b

AN S (
m

j i
mD xiX ~B1!

with xi5F@ui #, X5(1/N)( ixi , and Ji j
S denoting the sym-

metric part ofJi j . The dynamical equation~2! can be written
as u̇i52]E/]xi ux . We then obtain

dE

dt
5(

i
F8@ui #H 2S ]E

]xi
U
X
D 2

1
1

N

]E

]xi
U
X
(
j

b

AN S (
m

j j
mD xjJ . ~B2!

When the condition(mÞ1m
m(t)5O(1) is satisfied as in the

case of the usual retrieval condition~14!, we have

dE

dt
52(

i
F8~ui !S ]E

]xi
U
X
D 2<0 ~B3!

in the limit N→`.
It is noted, however, that setting an initial condition

ui5F21@(b/AN)((mj i
m)# breaks the above-mentioned co

dition.
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